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Purpose: Mammographic breast density is an established risk marker for breast cancer and is visu-
ally assessed by radiologists in routine mammogram image reading, using four qualitative Breast
Imaging and Reporting Data System (BI-RADS) breast density categories. It is particularly difficult
for radiologists to consistently distinguish the two most common and most variably assigned BI-
RADS categories, i.e., “scattered density” and “heterogeneously dense”. The aim of this work was to
investigate a deep learning-based breast density classifier to consistently distinguish these two cate-
gories, aiming at providing a potential computerized tool to assist radiologists in assigning a BI-
RADS category in current clinical workflow.

Methods: In this study, we constructed a convolutional neural network (CNN)-based model coupled
with a large (i.e., 22,000 images) digital mammogram imaging dataset to evaluate the classification
performance between the two aforementioned breast density categories. All images were collected
from a cohort of 1,427 women who underwent standard digital mammography screening from 2005
to 2016 at our institution. The truths of the density categories were based on standard clinical assess-
ment made by board-certified breast imaging radiologists. Effects of direct training from scratch
solely using digital mammogram images and transfer learning of a pretrained model on a large non-
medical imaging dataset were evaluated for the specific task of breast density classification. In order
to measure the classification performance, the CNN classifier was also tested on a refined version of
the mammogram image dataset by removing some potentially inaccurately labeled images. Receiver
operating characteristic (ROC) curves and the area under the curve (AUC) were used to measure the
accuracy of the classifier.

Results: The AUC was 0.9421 when the CNN-model was trained from scratch on our own mammo-
gram images, and the accuracy increased gradually along with an increased size of training samples.
Using the pretrained model followed by a fine-tuning process with as few as 500 mammogram
images led to an AUC of 0.9265. After removing the potentially inaccurately labeled images, AUC
was increased to 0.9882 and 0.9857 for without and with the pretrained model, respectively, both sig-
nificantly higher (P < 0.001) than when using the full imaging dataset.

Conclusions: Our study demonstrated high classification accuracies between two difficult to distin-
guish breast density categories that are routinely assessed by radiologists. We anticipate that our
approach will help enhance current clinical assessment of breast density and better support consistent
density notification to patients in breast cancer screening. © 2017 American Association of Physicists
in Medicine [https://doi.org/10.1002/mp.12683]

Key words: BI-RADS, breast density, convolutional neural network (CNN), deep learning, digital
mammography, transfer learning
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1. INTRODUCTION

Mammography is the standard screening examination for
breast cancer. Breast density is a measure used to describe
the proportion of fibroglandular tissue in a woman’s breast
depicted on a digital mammogram. Breast density can be
measured qualitatively or quantitatively. Qualitative methods
include the original Wolfe criteria,1 the Tabar classification,2
and the widely used Breast Imaging and Reporting Data Sys-
tem (BI-RADS) criteria.® The BI-RADS mammographic
breast density criteria include four qualitative categories: (a)
almost entirely fatty, (b) scattered areas of fibroglandular den-
sity (or “scattered density” for short), (c) heterogeneously
dense, (d) or extremely dense. Quantitative methods include
Cumulus software” to interactively determine the skin line
and to set a threshold for segmenting dense tissue; the area of
dense tissue is expressed in one of six-category percentages:
0, <10%, 10-25%, 26-50%, 51-75%, and >75%.” " Auto-
mated computerized methods include the LIBRA program’
that is publicly available to estimate an area-based percent
density as well as the volume-based commercial software,
such as Quantra'® and Volpara.'' The volume-based methods
function only on the raw (“FOR PROCESSING”) digital
mammogram images, which are not routinely stored in most
medical centers.

Several large studies have established that mammographic
breast density is an imaging-based risk marker for breast can-
cer,'>"? independent of age and menopausal status. Women
with extremely dense breasts have a 4-6 fold higher risk
compared to women with fatty breasts.'* When comparing a
woman with heterogeneously dense breasts to women with
average breast density, her risk is about 1.2 times higher to
develop breast cancer; likewise, the risk is about 2.1 times
higher when comparing a woman with extremely dense
breasts to women with average breast density.'” Dense breasts
are those given a clinical BI-RADS assessment of either
“heterogeneously dense” or “extremely dense”, and supple-
mental screening with ultrasound or even magnetic resonance
imaging (MRI) may be recommended. Dense breasts indicate
a higher risk of masking cancers and reduce the sensitivity. In
the U.S., 31 states have enacted breast density notification
legislation,'® and most of those laws require women to
receive some level of information regarding their breast den-
sity as part of the results letter from their mammograms.
Because recommendations for supplemental screening and
risk management may vary by breast density, it is highly
desirable in the clinic to have a consistent assessment of
breast density.

Current assessment of breast density by qualitative BI-
RADS categories is subjective, with substantial inter- and
intrareader variability;"“17 it is, however, the standard in cur-
rent clinical practice. Improving the accuracy and consistency
of breast density assessment is an unmet clinical need, whilst
there is automated quantitative density assessment emerging
and becoming available in limited facilities. While assess-
ment of fatty breasts and extremely dense breasts is highly
consistent, there is greater variability distinguishing scattered
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density from heterogeneously dense parenchyma'” (Fig. 1).
In the 5th edition of BI-RADS, the “heterogeneously dense”
assessment may be made based only on one dense area of the
breast, emphasizing its potential masking effect. This further
increases the variability in the clinical assessment on this BI-
RADS density category.

The accuracy of most conventional classification algo-
rithms (e.g., support vector machines) is based on strong fea-
ture engineering, which requires prior expert knowledge of
the data and a hard hand-crafting process to build descriptive
features. Conversely, deep learning can extract features auto-
matically and directly from original data.'"® Deep learning
coupled with big training data has shown promising capabil-
ity in many artificial intelligence applications'®*" and, more
recently, biomedical imaging analysis. For example, deep
learning has been used for thoraco-abdominal lymph node
detection and interstitial lung disease classification,”' real-
time 2D/3D registration of digitally reconstructed X-ray
images,22 breast lesion detection and diagnosis,z‘gf27 radio-
logical imaging segmentation,”®?° as well as digital breast
pathology image analysis®™*® such as mitosis detection and
counting, tissue classification (e.g., cancerous vs. non-cancer-
ous), segmentation (e.g., nuclei or epithelium),” and meta-
static cancer detection from whole slide images of sentinel
lymph nodes.?” Many such studies have shown that automatic
feature extraction using deep learning outperformed tradi-
tional hand-crafted imaging descriptors.?***!

Several studies have investigated deep learning in mam-
mographic breast imaging related tasks. Dubrovina et al.>”
presented a novel supervised CNN framework for breast anat-
omy (i.e., pectoral muscle, dense tissue, and nipple) classifi-
cation in mammography images, using a patch-wise
approach for CNN training. Deep learning has been tested for
diagnosis of lesions in several scenarios, such as differentiat-
ing between benign and malignant masses;*> discrimination
of masses, microcalcifications, and their combination;24
between tumor/mass and normal tissue;Z(”27 or between three
classes of benign, malignant, and normal tissue.”> A new
technique combining a cascade of deep learning and random
forest classifiers has been proposed to detect masses in mam-
mogram images.> In addition, unlabeled imaging data and
unsupervised feature learning (e.g., sparse autoencoder) have
been explored for breast density segmentation and risk scor-
ing.”® Deep convolution and deep belief networks have been
integrated in structured prediction models for mammographic
breast mass segmentation.”’

In this paper, we propose a deep learning-based approach
using CNN to build a computerized reader for BI-RADS-
based breast density categorization. Our work focused on dis-
tinguishing between the two most difficult to distinguish BI-
RADS density categories, i.e., “scattered density” Vvs.
“heterogeneously dense”. Our goals were to evaluate the
breast density classification performance of a deep learning-
based CNN framework coupled with a large (i.e., 22,000
images) set of digital mammogram images, and to perform a
preliminary evaluation on the effects of “transfer learning’>*
in this breast density classification task. Realizing that there
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FiG. 1. Examples of digital mammogram images illustrating the two difficult to distinguish Breast Imaging and Reporting Data System (BI-RADS) breast den-
sity categories. The top row are breasts with a “scattered density” (Category B) assessment and the bottom row are breasts with a “heterogeneously dense” (Cate-

gory C) assessment, all made in routine clinical practice.

is essentially no “ground truth” for clinical assessment of
breast density, we have leveraged the use of a quantitative
assessment of breast density to moderate the robustness of
the classification.

2. MATERIALS AND METHODS
2.A. Dataset

We performed a retrospective study that was compliant
with the Health Insurance Portability and Accountability Act
(HIPAA) and received Institutional Review Board (IRB)
approval by the Human Research Protection Office (HRPO)
at our institution. Informed consent from patients was waived
due to the retrospective nature. From another IBR-approved
existing study, we identified a cohort of 1,427 women who
underwent standard digital mammography screening from
2005 to 2016 and collected a large dataset of total 22,000 dig-
ital mammogram images associated with this cohort. One
patient may have multiple (in average 4, range 1-7) sequen-
tial screening mammogram examinations (each examination
has 4 images). The 22,000 images were those reported to
have either a “scattered density” (7,925 images) or “heteroge-
neously dense” parenchyma (14,075 images) on the clinical
mammography report. All the collected mammogram images
are negative or breast-cancer free at the time of study. The
BI-RADS-based breast density categories that had been rou-
tinely assigned in standard clinical workflow by radiologists
were retrieved from mammography reports and used as
ground truth. The BI-RADS density categories were clini-
cally assessed by a mix of many different board-certified
breast imaging radiologists with a varying range of experi-
ence in breast imaging. All mammogram examinations were
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acquired by the Hologic (Marlborough, MA, USA) full-field
digital mammography units. Both the mediolateral oblique
(MLO) and craniocaudal (CC) views of the left and right
breasts on the processed (i.e., “FOR PRESENTATION”)
images were analyzed.

2.B. Deep learning model

We employed a two-class CNN-based deep learning
model, which has shown promising performance in recent
work for image classification and pattern recognition.”’ The
CNN used an improved version of the AlexNet model, which
is not trained with the relighting data-augmentation and the
order of the pooling and normalization layers is switched.*
The CNN structure consists of five convolutional layers, three
max-pooling layers and three fully connected layers with a
final 2-way softmax function. The two-class CNN model was
constructed as an end-to-end system aiming at classifying the
two BI-RADS breast density categories: “scattered density”
vs. “heterogeneously dense”. The CNN model was imple-
mented using the Caffe platform running on a desktop com-
puter system with the following specifications: Intel® Core™
i7-4790 CPU@3.60GHZ with 8 GB RAM and a Titan X
Pascal Graphics Processing Unit (GPU). In addition to using
the GPU to accelerate training, we also used rectified linear
units (ReLU) in place of the traditional tangent function and
the sigmoid function as the activation function” to further
speed up the training. We applied 6-fold cross-validation for
the inner-loop CNN model training: dividing all the training
images randomly into 6 sets with an equal number of images
in each set, each time using five sets for training and leaving
one set for validation. The validation set is used to calibrate
the accuracy of the training process and prevent overfitting.
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In the model training process, the optimization of the hyper
parameters was performed using a stochastic gradient descent
(SGD) method with batch size of 50. In our configuration
(weight decay of 0.001 and a momentum of 0.9), we started
with a learning rate of 0.001 and dropped the learning rate by
a factor of ten every 2,500 iterations. These parameters were
fixed in all the experiments.
Several preprocessing steps are applied as follows:

1. The whole-breast region is first separated automati-
cally9 from the nonbreast region (i.e., air and chest
muscles) in each image and then used as the input of
the CNN models for training and testing.

2. Histogram equalization was run to adjust the intensity
distribution of all images to the same range.

3. All images were resized to a smaller resolution of
227 x 227 (original resolution: 3518 x 2800) to
allow a higher computational efficiency.

4. The mean image of training data was generated and
subtracted from each input image to ensure that every
feature pixel has a zero mean.

2.C. Analysis plans

The main analysis used solely our own collected digital
mammograms for training (i.e., training from scratch) and
also for testing the CNN model. Secondarily, we evaluated
the effects of “transfer learning” on mammographic breast
density classification. We initialized our CNN model with the
weights of the pretrained AlexNet model learned on a very
large existing nonmedical imaging database (i.e., ImageNet®®
— a large dataset consisting of 1.2 million labeled nonmedical
images for classifying 1,000 classes), followed by a fine-tun-
ing process of the pretrained model using a separate subset of
our own mammogram images. The fine-tuning was con-
ducted on all layers of a neural network, and the optimization
process was the same with that for model training from
scratch (as described in Section 2.B).

In addition, we performed an additional analysis by
removing some noisy or potentially inaccurately labeled
images to refine our mammogram image dataset. This was
done through calculating a quantitative measure of the
breast density and comparing it to the clinically-assigned
BI-RADS density categories. Here, the quantitative breast
percentage density (PD%) was computed using a fully auto-
mated computer tool (i.e., LIBRA®) for each image. In gen-
eral, for images with a “scattered density” (Set 1) or with a
“heterogeneously dense” (Set 2) category, by definition of
the BI-RADS density assessment, it is generally expected that
the quantitative PD% in Set 1 will be statistically lower than
the quantitative PD% in Set 2. It should be noted that we were
not making this a strict and hard condition because it is not a
fully validated premise; but in practice for most cases this con-
dition should make sense. Based on this condition, we
removed the “scattered density” images where the PD% was
“unexpectedly” greater than the average of the PD% of the

Medical Physics, 45 (1), January 2018

317

“heterogeneously dense” images, and likewise, the “heteroge-
neously dense” images were removed where the PD% was
“unexpectedly” lower than the average of the “scattered den-
sity” images. The removed cases may reflect some potentially
inaccurately labeled data, and by excluding them, we expect
that the remaining data are less affected by noisy or inaccurate
qualitative BI-RADS density assessment made by visual obser-
vations of radiologists. We then repeated the breast density
classification on the remaining dataset and compared the clas-
sification accuracy to that using the original full dataset.

2.D. Statistical analysis

We used receiver operating characteristic (ROC) analysis
with the area under the ROC curve (AUC)?’ to measure the
performance of the classifier. In order to account for the clus-
tering/correlation effects caused by the multiple examinations
per patient, N. Obuchowski’s test’® was specifically
employed to measure the statistical significance of the differ-
ences between AUCs of different CNN models. Also, the
Bonferroni correction was applied to adjust the P-values for
multiple comparisons. In order to reduce the potential bias in
training the CNN models caused by substantially unbalanced
sample sizes for the two categories, we used 7,000 “scattered
density” images and 7,000 “heterogeneously dense” images,
all randomly selected from the entire dataset of each category,
for training the CNN classifier. A separate unseen set of
1,850 images (including 925 with a “scattered density” and
925 with a “heterogeneously dense” category), randomly
selected from the remaining images of each category and
without overlap with the selected training images, were used
for testing the classification performance. The training and
testing were repeated 20 times each time with randomly
selected training and testing samples and the averaged CNN
classification AUCs were reported. Furthermore, in order to
test the influence of different sizes of training samples on the
classification accuracy, we re-ran the experiments by decreas-
ing the number of training images gradually from 7,000 to
500, while maintaining the same hyper parameters for each
subset of the training samples and using the same number of
testing samples each time (i.e., 925 for each category).

3. RESULTS

3.A. Training from scratch on our own
mammogram images

We first present the main analysis of our CNN-based
breast density classification model, trained directly and solely
by using our own mammographic data. Figure 2 shows
selected representative ROC curves for two different training
sample sizes, while the AUCs with 95% confidence intervals
(CIs) with respect to a range of training sample sizes from
500 to 7,000 were plotted in Fig. 3. When trained on 500
images for each of the two classes, the AUC of our CNN
model for 1,850 unseen testing samples was 0.9081. In com-
parison, AUC increased to 0.9421 when trained on 7,000
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images. It was observed from Fig. 3 that in general the classi-
fication AUC gradually improved along with the increase in
the training sample size.

3.B. Effects of transfer learning

Results of using transfer learning are shown in Figs. 4
(representative ROC curves) and 5 (AUCs with 95% Cls
when using different number of training samples for fine-tun-
ing). Effects of transfer learning can be seen by comparing to
the training from scratch. AUC was improved from 0.9081
(Fig. 3; training from scratch on 500 training samples) to
0.9265 (Fig. 5; when using the pretrained model coupled
with 500 mammogram images for fine-tuning). However,
when the largest size of training samples was used (i.e., 7,000
images), the AUC (0.9243 in Fig. 5) was slightly lower
(P =0.166) than when not using the pretrained model
(0.9421 in Fig. 3). Figure 5 shows that the classification per-
formance is relatively stable (around approximately 0.92)
when the sample size varied gradually from 500 to 7,000.

3.C. Additional analysis on removing noisy data

According to the criteria defined for additional analysis in
Section 2.C, of the 7,925 “scattered density” images there
were 867 images (i.e., 10.9%) whose PD% was greater than
the average PD% (i.e., 15.0%) of the 14,075 “heterogeneously
dense” images; similarly, out of the 14,075 “heterogeneously
dense” images, there were 2,286 images (i.e., 16.2%) whose
PD% was lower than the average PD% (i.e., 29.5%) of the
7,925 “scattered density” images. We removed the 867
images from the “scattered density” images and 2,286 from
the “heterogeneously dense” images, respectively, leaving a
total of 18,847 images compared to the original full set of
22,000 images. Then we repeated the classification using the
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FiG. 2. Representative ROC curves on breast density classification perfor-
mance for the convolutional neural network (CNN) model trained from
scratch on our digital mammogram images. [Color figure can be viewed at
wileyonlinelibrary.com]
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Fic. 3. Boxplot of breast density classification AUCs with 95% ClIs for the
convolutional neural network (CNN) model trained from scratch on our
mammogram images. A general trend of improved AUC with increased
training samples was observed. [Color figure can be viewed at wileyonlineli-
brary.com]

True positive rate (Sensitivity)

| I = = training size/class = 2000 images (AUC = 0.9223)
0.4 H —— training size/class = 6000 images (AUC = 0.9256)
0.3
0.2
0.1
0 . . . s
0 0.2 0.4 0.6 0.8 1

False positive rate (1 - Specificity)

Fic. 4. Representative ROC curves on breast density classification perfor-
mance when using the pretrained convolutional neural network (CNN) model
with a fine-tuning process. [Color figure can be viewed at wileyonlinelibrar-
y.com]

remaining 18,847 images, where 6,000 were randomly
selected for each category for training and 1,850 (including
925 “scattered density” and 925 ‘“heterogeneously dense”)
randomly selected images (no overlap with training samples)
for testing. As shown in Fig. 6, after removing those “noisy”
images, AUC was increased to 0.9882 and 0.9857 for without
and with the pretrained model respectively. Recall that the
corresponding AUC was 0.9455 (Fig. 2) and 0.9256 (Fig. 4),
respectively, when 6,000 training samples were used before
the noisy image removal. The increase in AUC from 0.9455
(Fig. 2) to 0.9882 (Fig. 6) is statistically significant
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Fic. 5. Boxplot of breast density classification AUCs with 95% CIs when
using the pretrained convolutional neural network (CNN) model with a fine-
tuning process. A relatively stable classification performance was observed
when using a different number of training samples for fine-tuning the mod-
els. [Color figure can be viewed at wileyonlinelibrary.com]

(P < 0.001) without transfer learning. Similarly, the increase
in AUC from 0.9256 (Fig. 4) to 0.9857 (Fig. 6) is also statis-
tically significant (P < 0.001) with transfer learning. All
these comparisons showed that after removing the noisy or
potentially inaccurately labeled images, the CNN-based
breast density classification performance was significantly
improved compared to without the removal.

4. DISCUSSION

In this work, we presented a new deep learning-based
medical imaging application to distinguish between the two
most difficult to distinguish “scattered density” and

"
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FiG. 6. Breast density classification performance after removing potentially
inaccurately labeled images. The AUCs with 95% Cls showed a significant
(P < 0.001) improvement over using the original full imaging dataset. [Color
figure can be viewed at wileyonlinelibrary.com]
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“heterogeneously dense” categories in clinical breast density
assessment. Assessing breast density is a routine clinical need
for a large amount of digital mammogram images acquired in
breast cancer screening. Accurate and consistent breast density
assessment is highly desirable in the current context of breast
density notification in order to provide more informed clinical
decision-making support to both clinicians and patients. Out
of the four BI-RADS breast density categories, it is fairly easy
to distinguish the categories of “almost entirely fatty”” and “ex-
tremely dense” by visual assessment, where radiologists are
realistically comfortable to make decisions without needing
assistance. However, it is challenging for radiologists in
assigning a consistent classification of “scattered density” vs.
“heterogeneously dense”, due to the difficulty of discerning
the visual features of dense breast tissues between the two cat-
egories. Therefore, this work focused on building a CNN
model to assist the radiologists in assigning the two difficult
to distinguish categories. This represents a more targeted
development and use of computerized tools to meet realistic
clinical needs. In the potential use of this CNN model inte-
grated in clinical workflow as a second reader, if radiologists
are in doubt between the two categories, they could use this
tool to generate a prediction to help improve determination of
a BI-RADS breast density category.

We collected a large mammogram imaging dataset and
showed that the CNN-based classifier can achieve the highest
AUC of 0.94-0.98. Overall, the more training samples were
used, the higher the AUC achieved. At the same time, it is
observed that a much smaller size of training samples, as
small as 500, also led to a just slightly lower accuracy. This
may indicate that the CNN-based deep learning approach
was able to effectively identify essential imaging features
from a relatively small number of training images, to distin-
guish the two BI-RADS breast density categories.

We evaluated effects of transferring prelearned knowledge
on a very large nonmedical image dataset (i.e., ImageNet, >1
million nature images with labeled ground truth) and then
fine-tuning the pretrained model with a subset of the specific
mammogram images in our breast density-based task. This
analysis was motivated by the fact that a large set of reliably
labeled medical images (such as outlined ground truth of
lesion, tissue, or anatomy) is hard and time-consuming to
generate manually by experts and therefore, not commonly
available as benchmark for training.”® In this work, it is
observed that the CNN models based on transfer learn-
ing can achieve a comparable classification performance to
that without using the transfer learning. It is also seen that in
our task the AUC seems not to be very sensitive to the size of
the fine-tuning samples, indicating that the pretrained model
might already be able to dominate the classification effects
and requires only minimal fine-tuning optimization. Also, it
should be noted that even the fine-tuned performance looks
slightly lower than the model trained from scratch, the statis-
tical analysis showed that the difference of the AUCs is not
significantly different. So, they are still in comparable range.
In addition, in the second experiment, after removing some
noisy data, the AUC is still very close to each other with or
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without transfer learning. All these results may indicate some
unique characteristics of this dataset, the specific task, or the
role ImageNet has played in our experiments. But essentially
these findings will need further investigations, especially by
testing the models on a larger and external dataset from other
institutions.

In this work, we used an end-to-end deep learning approach
for the density category classification. In testing the transfer
learning effects, we used the AlexNet model pretrained on
ImageNet and fine-tuned it with our own mammogram data.
Another method of transfer learning is to use a deep learning
model as a feature extractor. For example, Bram van Ginneken
et al.*? used features extracted from the first fully connected
layer of the CNN and then fed these features into a linear sup-
port vector machine for classification. Such off-the-shelf fea-
tures extracted from off-the-shelf deep learning models trained
on natural images have shown competitive performance on cer-
tain medical tasks.”® These are interesting findings regarding
the usefulness of transfer learning from nonmedical images to
medical imaging-based applications, and we believe that fur-
ther investigation on this topic is still merited.

We realize that there is essentially no ground truth for the
BI-RADS-based visual breast density assessment. Radiologists
may not be able to consistently reproduce their assessment,
and within or amongst different radiologists, there are frequent
between “scattered density” and ‘“heterogeneously dense”
assignments. Also, clinics demand objective and reproducible
assessment of breast density, and there are attempts to use
some of the automated computerized algorithms (such as
LIBRA, Quantra, and Volpara) to generate quantitative breast
density measures. While this is considered the trend of the
future, these algorithms either require further evaluation (such
as LIRBA) or are limited to specific setting (for example,
Quantra and Volpara need to use raw mammogram images).
At this stage of the clinical reality, BI-RADS-based breast den-
sity categories are still the standard/mainstream for breast den-
sity assessment. We emphasize that our study is valuable
because it not only used real-world clinical images and the
breast density assessment annotated in standard clinical work-
flow, but also addresses a real clinical question and further-
more, served as another clinical application that showed the
capability of the newly emerged revolutionary deep learning
techniques. Our CNN model is mainly to be used to assist radi-
ologists in the two BI-RADS category determination, and as
clinically needed, it could certainly be used to complement the
quantitative breast density assessment software as well. In
addition, we performed an additional analysis by removing cer-
tain “noisy” images — those that may represent some of the
less-reliably or inaccurately labeled cases in actual clinical
practice when determining the two BI-RADS density cate-
gories (e.g., one category might be accidently or “wrongly”
assigned to the other). After excluding those images, the classi-
fication performance was boosted to even higher AUCs
(around 0.98), with or without the transfer learning. This
showed that overall our CNN-based deep learning models
were able to automatically and precisely distinguish the two
difficult to distinguish BI-RADS breast density categories.
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The strengths of our studies include (a) usage of a large
clinical imaging dataset, (b) test of training from scratch and
transfer learning of pretrained deep learning models, and (c)
additional analysis to mitigate the influence of noisy or
wrongly labeled data (i.e., the assigned BI-RADS density cat-
egories). Our study has some limitations. First, this is a single
center retrospective study and our data have little variation in
the imaging acquisitions in terms of mammographic vendors
and imaging parameters. Second, the studied images were
read by many radiologists and we did not track which radiol-
ogist interpreted which images (the labor of this task is
beyond our affordable efforts). However, if we were to have
such information, it would enable us to evaluate the reading
performance of different readers and potentially use that
insight as a means to enhance understanding to their reading
behaviors, and accordingly improve training/education on
mammographic image reading. In addition, the lack of
ground truth for breast density assessment is a limitation.
However, after removing the potentially inaccurately labeled
images, among the remaining large number (i.e., 18,847) of
images, a higher consistency between the BI-RADS-based
truth read by radiologists and the PD% generated by the
LIBRA software can be reasonably expected. Finally, this
study included only cancer-free mammogram images, consid-
ering that use of cancer-affected images may introduce bias
in training a breast density classification model (e.g., the
model may unexpectedly learn features associated with tumor
other than dense tissue). Nevertheless, we plan in our future
work to evaluate the effects of the learned model in this study
by testing (not training) it using cancer-affected images. In
general, our study will benefit from more in-depth analysis
and larger scale evaluation. We plan to further improve our
study by, for example, identifying which type of images are
more likely to be misclassified, comparing other CNNs
model structures to the AlexNet, developing other strategies
to deal with noisy or potentially inaccurately labeled data,
testing by using larger multi-center datasets, and so on.

Deep learning has shown an excellent capability in learn-
ing imaging features/traits from annotated imaging data with-
out the need of conventional hand-crafting feature
engineering. Feature engineering can be hard especially for
the studied breast density assessment problem because it is
not straightforward to directly model how radiologists make
the visual decision and what kind of local and/or holistic
imaging information they rely on in qualitatively determining
either of the two BI-RADS breast density categories. This
also limits a further comparison between the deep learning-
based method and feature engineering-created descriptors. In
this study, we demonstrated a deep learning-based CNN
model that automatically identifies discriminative informa-
tion from clinically annotated mammogram images and these
images were read by many radiologists in a long-term clinical
practice. Our approach avoids hand-crafting processes of
image features and therefore is expected to generate more
consistent breast density assessment to potentially help
improve current clinical procedures in breast density assess-
ment and notification.
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5. CONCLUSION

Our study showed encouraging classification performance
by a deep learning-based CNN model in distinguishing the
“scattered density” vs. “heterogeneously dense” breast density
categories. This work adds a new example of applying deep
learning and transfer learning in analyzing a large clinical breast
imaging dataset. We anticipate that our approach will provide a
promising computerized toolkit to help enhance current clinical
assessment of breast density and better support lawful density
notification to patients in breast cancer screening.
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